SPHENIX WITH FORWARD INSTRUMENTATION AT RHIC: WHAT CAN WE LEARN WITH IT?

NILS FEEGE

for the sPHENIX Collaboration

RBRC Workshop: Synergies of pp and pA Collisions with an Electron-Ion Collider

Brookhaven National Laboratory, June 26 - June 28 2017

- The sPHENIX experiment (with forward instrumentation).
- Forward Drell-Yan dielectrons: Study how the binding of nucleons into nuclei affects the sea.
- Transverse single-spin asymmetries for jets and dijets: Study parton polarization dynamics and search for non-Abelian effects.

THE EXPERIMENT

MAGNET

'BaBar' Solenoid

TRACKING SYSTEM

ELECTROMAGNETIC CALORIMETER

2.6 m

W + scintillating fibre

Pb + scintillator (PHENIX)

PbWO₄ crystal (PHENIX)

HADRON CALORIMETER

EVOLUTION INTO A DAY-1 EIC DETECTOR

- Solenoid and flux return
- Electromagnetic calorimeter
- Hadron calorimeter

- Central tracking
- GEM tracking
- RICH particle ID

NUCLEAR PARTON DISTRIBUTION FUNCTIONS

LUMINOSITY ASSUMPTIONS

	Recorded Lumi.	Sampled Lumi.
Au+Au 200 GeV	$35.0nb^{-1}$	$80nb^{-1}$
p↑+Au 200 GeV	-	$0.33pb^{-1}$
p↑+p↑ 200 GeV	_	$197pb^{-1}$
p↑+p↑ 510 GeV	-	$488pb^{-1}$

Possible 5-year sPHENIX run plan presented to BNL PAC 6/15/2017

HOW DOES THE NUCLEAR ENVIRONMENT AFFECT THE DISTRIBUTION OF QUARKS AND GLUONS AND THEIR INTERACTIONS IN NUCLEI?

NUCLEAR MODIFICATION OF PARTON DISTRIBUTIONS

GLOBAL FITS EXTRACT NUCLEAR MODIFICATION

DRELL-YAN EVENTS PROBE SEA ANTIQUARKS IN NUCLEI

large x_A of quark inside proton

small x_B of anti-quark inside nucleus

HOW WELL CAN WE MEASURE 16 DRELL-YAN EVENTS?

DATA COMPLEMENT LHC AND FIXED-TARGET EXPERIMENTS

TRANSVERSE SINGLE-SPIN ASYMMETRIES

LARGE SPIN-MOMENTUM CORRELATIONS IN TRANSVERSELY POLARIZED P+P COLLISIONS

BUT:

Only 1-10% in SIDIS

WHY NOT FOR INCLUSIVE JET 20 MEASUREMENTS?

Cancellation?

Comparison: Up to 15% for π^0

SEPARATING UP- AND DOWN-QUARK JET CONTRIBUTIONS

ACCESSING TRANSVERSITY VIA HADRONS WITHIN JETS

compare to SIDIS as function of x, z, and Q^2

π⁺ Torino 2007 π π⁺ Soffer Bound π

π⁻ Torino 2007
 π⁻ Soffer Bound

h 268 pb⁻¹

SPHENIX COVERS WIDE RANGE IN X UP TO X = 0.5

INVESTIGATING FACTORIZATION 24 BREAKING IN PHENIX

SEARCHING FOR NON-ABELIAN EFFECTS IN Y-JET AND DI-JET CORRELATIONS

PHENIX midrapidity γ -hadron correlations

SPHENIX CAN HELP UNLOCK THE FULL POTENTIAL OF AN EIC BY:

 measuring transverse singlespin asymmetries in hadronic collisions for tests of universality,

 directly exploring effects from factorization breaking in hadronic collisions.

REFERENCES

- ► An Upgrade Proposal from the PHENIX Collaboration (sPHENIX): arXiv:1501.06197v1 [nucl-ex]
- LOI for sPHENIX forward instrumentation: https://www.sphenix.bnl.gov/web/node/450
- RHIC Cold QCD Plan: arXiv:1602.03922v1 [nucl-ex]
- ▶ EPPS16: Nuclear parton distributions with LHC data: Eur.Phys.J. C77 (2017) no.3, 163, DOI: 10.1140/epjc/s10052-017-4725-9
- Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p+p collisions at sqrt{s}=510 GeV: Phys. Rev. D 95, 072002 (2017), DOI: 10.1103/PhysRevD.95.072002

Multi-year run plan scenario for sPHENIX

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
2022	Au+Au	200	16.0	$7 \; { m nb^{-1}}$	$8.7 \; {\rm nb^{-1}}$	34 nb^{-1}
2023	p+p	200	11.5	_	48 pb^{-1}	$267 \ {\rm pb^{-1}}$
2023	p+Au	200	11.5		$0.33 \ \mathrm{pb^{-1}}$	$1.46~{ m pb^{-1}}$
2024	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	88 nb^{-1}
2025	p+p	200	23.5	_	$149 \ {\rm pb^{-1}}$	$783 \; {\rm pb}^{-1}$
2026	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	92 nb ⁻¹

- Guidance from ALD to think in terms of a multi-year run plan
- Consistent with language in DOE CD-0 "mission need" document
- Incorporates updated C-AD guidance now officially documented
- Run plan relates to capabilities of full barrel detector
- Incorporates commissioning time in first year

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (2022) + 96 billion (2024) + 96 billion (2026) = Total 239 billion events

For topics with Level-1 selective trigger (e.g. high p_T photons), one can sample within |z| < 10 cm a total of 550 billion events. One could consider sampling events over a wider z-vertex for calorimeter only measurements, 1.5 trillion events.

Presented by D. Morrison to BNL PAC 6/15/2017